In this issue of TechSAge News, we are highlighting our recent events, staff, projects, publications and more. Follow along to learn more about our most recent happenings!

RESPONDING TO COVID-19

When the COVID-19 pandemic reached the U.S in Mid-March, TechSAge research turned virtual. Between campus closures, stay-at-home orders, and social distancing guidelines, tele-working has become the new normal. Through the challenges of the past few months and uncertainty of what lies ahead as campuses prepare to re-open, our team has managed to stay connected. We have shifted to conducting all team meetings and conference presentations via videoconferencing, using platforms like Zoom. We held our first ever summer “All-Hands” meeting, via Zoom, to bring the team together for a check-in to share project updates and discuss strategies for navigating COVID-related challenges.
As most of our team continues to work from home without in-person access to our facilities and research participants, we have had to get creative in moving our research forward. Without access to the Georgia Tech Aware Home, where the SmartBathroom Laboratory is located, the project team has had to shift gears to focus on efforts that can be done without physically being in the lab – analyzing data and revising conceptual models and creating new tools for training and education based on those analyses. In the meantime, Georgia Tech has recently given us the go ahead to get back in the lab on a limited basis and work on installing our SmartBathtub prototype should be completed by the time the Semester begins.

The freeze of in-person research activities with human subjects has impacted all projects in different ways. Fortunately, the Monitoring and Managing Falls project wrapped up data collection just before stay-at-home orders were put into place, and is now in the data analysis phase. For the SteadyWheels project, plans for in-person usability testing of the smart phone app had to be completely re-envisioned due to COVID-19. The team developed new procedures for remote usability testing, wherein participants are mailed phones with the Steady Wheels app installed and join the usability session with a researcher via Zoom. Fortunately, the User Needs research activities were designed to be carried out remotely via online surveys and remote interviews. However, the team is incorporating COVID-specific interview questions to understand more about the unique challenges people aging with disabilities are facing during the pandemic.

With many Americans spending more time at home than ever, our research exploring the use of connected home technologies and voice-activated digital assistants to support everyday activities of people aging with disabilities is timely. This period of social distancing also underscores the critical need to provide remote access to health and wellness programs for all, but especially for older adults with disabilities who are at increased risk for social isolation. We are excited to be addressing this need directly in our Tele Tai Chi study, where researchers are using video conferencing to make the social and physical benefits of group tai chi classes accessible at home for people aging with mobility disabilities.

MISSION

The mission of the Rehabilitation Engineering Research Center on Technologies to Support Aging-in-Place for People with Long-Term Disabilities (RERC TechSAge) is:

- to support and empower people with chronic conditions and long-term impairments to age-in-place
- through increasing knowledge about, availability of, and access to effective design and technologies
- that enable individuals to sustain independence; maintain health; engage safely in basic activities at home and in the community; and fully participate in society.

PROJECT SPOTLIGHTS

Falls are a leading cause of injury in older adults and older adults with mobility disabilities are at even greater risk. In addition to physical injury, falls can also lead to psychological consequences, such as fear of falling, which can hinder an individual’s confidence for everyday activities and independence. Research on falls among older adults has largely centered on ambulatory individuals. Consequently, existing falls risk assessments, prevention strategies, and detection devices are not designed with wheelchair users in mind. Two TechSAge projects are working to bridge this gap by developing new technologies to support falls prevention management for this population.
Led by Dr. Laura Rice, the Monitoring and Managing Falls Project is working to develop a system that will accurately detect falls from wheelchairs and scooters to automatically alert caregivers or emergency professionals who can respond to help. To achieve this, the team has been conducting controlled falls from wheelchairs in the lab setting to measure acceleration patterns as shown in the video clip below. Fall pattern data, collected just before campus closures due to COVID-19, are being used to develop and refine the fall detection algorithm.

"Falls are common in about 75% of wheelchair and scooter users in a 6-month period" Rice says. "The goal is to create a wearable device that will give users added confidence to get out into their community" Rice says. Ultimately, she hopes to create a product on the market so that “people can buy a device that they feel confident will detect a fall and get them the assistance they need.”

Most adults with mobility disabilities who use wheeled devices do not receive comprehensive falls risk screening or targeted prevention strategies. To address this need, Dr. Jake Sosnoff and his team are developing Steady Wheels —an app that leverages built-in smart phone sensors to assess movement and postural control among wheelchair users. By collecting user’s movement data and responses to a series of falls-related questions, Steady Wheels aims to provide preventative actions and resources customized to their personal risk factors.

The Steady Wheels app is being designed to make falls risk assessments more accessible for this population. Sosnoff notes, "There’s a breakdown in the way our healthcare system is set up. Most clinicians don’t have time to screen and do targeted interventions, so my project is built off the notion that we can do fall risk assessment outside a clinic.” With plans to make the app available for download on personal mobile devices, the Steady Wheels team hopes to empower wheelchair user with knowledge about their personal falls risk factors so they can take steps to reduce their risk.
Older adults with disabilities acquired in early to mid-life, who are aging with disability, represent an understudied population that is likely to be underserved. To help address this need, TechSAge investigators developed the **TechSAge Minimum Battery**, the first self-report health questionnaire designed to provide a holistic understanding of health and health needs of people aging with a disability. The questionnaire, which can be completed by paper, online, or by phone, compiles multi-dimensional measures of aging and disability, and covered the following topics: demographics, subjective health, health conditions, vision/hearing/mobility functional abilities, technology use (general and assistive) and cognition. A new article in the *Journal of Disability and Health* provides an overview of the assessment and presents findings among a sample of people aging with long-term sensory and mobility disabilities (N=176). Results underscore the heterogeneity among people aging with disability and the importance of capturing multi-dimensional factors inclusive of an individual’s capacity, context, and personal factors.

For information on how to access the full article, “The TechSAge Minimum Battery: A multidimensional and holistic assessment of individuals aging with long-term disabilities”, by Remillard, Griffiths, Mitzner, Sanford, Jones & Rogers, [visit our website](#).

PODCASTS

Two new podcasts have been released in the Easter Seals Assistive Technology Update as a part of the TechSAge series! In the latest [TechSAge podcast episode](#), Ben Jacobs discusses smart home technologies and how they can be incorporated into a home in order to support aging-in-place. In the [prior episode](#), Liz Persaud and Carolyn Phillips talk principles of Universal Design, from home renovations to the importance of voice & touch controls on the Amazon Echo show.

UNIVERSAL DESIGN VIDEO SERIES

TechSAge's Jon Sanford and Carolyn Phillips in collaboration with Tools for Life (Georgia’s AT Program) and the UD Workplace Disability and Rehabilitation Research Project, have produced a [video series](#) exploring the 7 Principles of Universal Design (UD) and how they can be applied to products, interfaces and spaces to make designs that are usable to all people to the greatest extent possible. This 9-part series covers each principle individually and offers examples to those wishing to learn more about the UD Principles. The principles of Universal Design are as follows:

1. **Equitable Use**: Design that can be used by people with diverse abilities.
2. **Flexibility in Use**: Design that can accommodate a wide range of individual preferences and abilities.
3. **Simple and Intuitive Use**: Design that minimizes errors through ease of use.
4. **Perceptible Information**: Design that provides information or content in a format that can be perceived by at least one of the senses.
5. **Tolerance for Error**: Design that reduces the impact of errors by providing feedback and by increasing tolerance to user error.
6. **Low Physical Demand**: Design that minimizes the amount of force, energy, and motion required for operation.
7. **Size and Space for Approach and Use**: Design that provides adequate space for approach, reach, manipulation, and use.

Featured Article

Older adults with disabilities acquired in early to mid-life, who are aging with disability, represent an understudied population that is likely to be underserved. To help address this need, TechSAge investigators developed the **TechSAge Minimum Battery**, the first self-report health questionnaire designed to provide a holistic understanding of health and health needs of people aging with a disability. The questionnaire, which can be completed by paper, online, or by phone, compiles multi-dimensional measures of aging and disability, and covered the following topics: demographics, subjective health, health conditions, vision/hearing/mobility functional abilities, technology use (general and assistive) and cognition. A new article in the *Journal of Disability and Health* provides an overview of the assessment and presents findings among a sample of people aging with long-term sensory and mobility disabilities (N=176). Results underscore the heterogeneity among people aging with disability and the importance of capturing multi-dimensional factors inclusive of an individual’s capacity, context, and personal factors.

For information on how to access the full article, “The TechSAge Minimum Battery: A multidimensional and holistic assessment of individuals aging with long-term disabilities”, by Remillard, Griffiths, Mitzner, Sanford, Jones & Rogers, [visit our website](#).

PODCASTS

Two new podcasts have been released in the Easter Seals Assistive Technology Update as a part of the TechSAge series! In the latest [TechSAge podcast episode](#), Ben Jacobs discusses smart home technologies and how they can be incorporated into a home in order to support aging-in-place. In the [prior episode](#), Liz Persaud and Carolyn Phillips talk principles of Universal Design, from home renovations to the importance of voice & touch controls on the Amazon Echo show.

UNIVERSAL DESIGN VIDEO SERIES

TechSAge's Jon Sanford and Carolyn Phillips in collaboration with Tools for Life (Georgia’s AT Program) and the UD Workplace Disability and Rehabilitation Research Project, have produced a [video series](#) exploring the 7 Principles of Universal Design (UD) and how they can be applied to products, interfaces and spaces to make designs that are usable to all people to the greatest extent possible. This 9-part series covers each principle individually and offers examples to those wishing to learn more about the UD Principles. The principles of Universal Design are as follows:

1. **Equitable Use**: Design that can be used by people with diverse abilities.
2. **Flexibility in Use**: Design that can accommodate a wide range of individual preferences and abilities.
3. **Simple and Intuitive Use**: Design that minimizes errors through ease of use.
4. **Perceptible Information**: Design that provides information or content in a format that can be perceived by at least one of the senses.
5. **Tolerance for Error**: Design that reduces the impact of errors by providing feedback and by increasing tolerance to user error.
6. **Low Physical Demand**: Design that minimizes the amount of force, energy, and motion required for operation.
7. **Size and Space for Approach and Use**: Design that provides adequate space for approach, reach, manipulation, and use.

Featured Article

Older adults with disabilities acquired in early to mid-life, who are aging with disability, represent an understudied population that is likely to be underserved. To help address this need, TechSAge investigators developed the **TechSAge Minimum Battery**, the first self-report health questionnaire designed to provide a holistic understanding of health and health needs of people aging with a disability. The questionnaire, which can be completed by paper, online, or by phone, compiles multi-dimensional measures of aging and disability, and covered the following topics: demographics, subjective health, health conditions, vision/hearing/mobility functional abilities, technology use (general and assistive) and cognition. A new article in the *Journal of Disability and Health* provides an overview of the assessment and presents findings among a sample of people aging with long-term sensory and mobility disabilities (N=176). Results underscore the heterogeneity among people aging with disability and the importance of capturing multi-dimensional factors inclusive of an individual’s capacity, context, and personal factors.

For information on how to access the full article, “The TechSAge Minimum Battery: A multidimensional and holistic assessment of individuals aging with long-term disabilities”, by Remillard, Griffiths, Mitzner, Sanford, Jones & Rogers, [visit our website](#).

PODCASTS

Two new podcasts have been released in the Easter Seals Assistive Technology Update as a part of the TechSAge series! In the latest [TechSAge podcast episode](#), Ben Jacobs discusses smart home technologies and how they can be incorporated into a home in order to support aging-in-place. In the [prior episode](#), Liz Persaud and Carolyn Phillips talk principles of Universal Design, from home renovations to the importance of voice & touch controls on the Amazon Echo show.

UNIVERSAL DESIGN VIDEO SERIES

TechSAge's Jon Sanford and Carolyn Phillips in collaboration with Tools for Life (Georgia’s AT Program) and the UD Workplace Disability and Rehabilitation Research Project, have produced a [video series](#) exploring the 7 Principles of Universal Design (UD) and how they can be applied to products, interfaces and spaces to make designs that are usable to all people to the greatest extent possible. This 9-part series covers each principle individually and offers examples to those wishing to learn more about the UD Principles. The principles of Universal Design are as follows:

1. **Equitable Use**: Design that can be used by people with diverse abilities.
2. **Flexibility in Use**: Design that can accommodate a wide range of individual preferences and abilities.
3. **Simple and Intuitive Use**: Design that minimizes errors through ease of use.
4. **Perceptible Information**: Design that provides information or content in a format that can be perceived by at least one of the senses.
5. **Tolerance for Error**: Design that reduces the impact of errors by providing feedback and by increasing tolerance to user error.
6. **Low Physical Demand**: Design that minimizes the amount of force, energy, and motion required for operation.
7. **Size and Space for Approach and Use**: Design that provides adequate space for approach, reach, manipulation, and use.

AMAZON ECHO USER GUIDES

Voice activated digital home assistants, such as the Amazon Alexa devices, have great potential to support people aging with long term mobility disabilities in completing daily activities. However, many older adults experience technical challenges in setting up and using these devices. As part of our Digital Assistants to Support Health and Independence: Development and Instructional Support project, Dr. Travis Kadylak and Dr. RS Sreenivas, along with their team, developed two Amazon Echo User Guides. The basic uses guide provides a useful and easy-to-use tool to help explain how to use an Amazon Echo device to its full potential. It features relevant resources and information that teach how to make common voice commands, customize settings, and resolve potential problems. The setting up guide provides step-by-step, visual instructions to help successfully set up an Amazon Echo device so it can be used to perform a variety of actions or tasks. The guide provides instructions for the various Amazon Echo products (e.g., Echo Show, Echo Spot), how to set up an Alexa account, and more, so that the user can gain the most benefits from these smart and connected technologies.
GRADUATE SPOTLIGHT

CONGRATS TO OUR TECHSAGE GRADUATES!

CLASS OF 2020

Georgia Tech I ILLINOIS I Emory University
TechSAge is extremely proud to congratulate our class of 2020. Despite graduating through unprecedented times, we are sure these graduates will go on to do amazing things!

We asked a few graduating seniors to share: **What have you enjoyed most about your involvement in TechSAge research?**

"I've had the opportunity to investigate how voice-activated digital home assistants like the Amazon Alexa devices may help older adults manage their health and control their home environment. I've learned so much from my involvement in TechSAge research and I am incredibly thankful for the opportunity to work with such a remarkably talented team."
- Chris Kovac, Class of 2020

"I always knew I wanted to work with older adults, but I didn’t know exactly how. I was inspired by the TechSAge ACCESS Study, which explored everyday challenges people aging with disabilities face, to pursue a career in social work. I see a career in social work as a way for me to interact with older adults that’s personal & can make a difference."
- Alyse Bondarowicz, Class of 2020

AWARDS AND RECOGNITIONS

TechSAge investigator **Su Jin (Susan) Lee** was awarded the 2020 Outstanding Research Faculty award for the Georgia Tech College of Design. This award is given to research faculty within the College who have established an exemplary record of research development and execution over the previous academic year. Susan is a licensed occupational therapist currently pursuing her PhD in Industrial Design under the mentorship of Jon Sanford, while working full-time as a research scientist. She is the Principal Investigator for a 3-year project, *Environmental Barriers and Facilitators to Assisted Toilet Transfers by People Aging with Disability and their Caregivers*, sponsored by NIDILRR. Susan has won two awards for best demo and best pitch in 2019 from a leading aging and technology network in Canada. This Fall, Susan is joining the OT department at Georgia State University as Clinical Assistant Professor. Congrats to Susan on her new position!

Mikaela Frechette was granted her MS in Kinesiology (May 2020) for her thesis entitled, “The validity, reliability, and sensitivity of a smartphone-based seated postural control assessment in wheelchair users”, as part of the SteadyWheels project. She will continue working with the **Motor Control Research Lab**, directed by Jake Sosnoff, as she pursues a Ph.D.
Maya Malecki, an incoming Junior majoring in Community Health, was awarded the Community-Academic Scholar scholarship in Brain Health by the Illinois Health Sciences Institute. This funding supports her work on a collaborative project titled “A Community-Based Assessment of Digital Home Assistants and Older Adults” which assess older adults’ perceptions toward digital home assistant technologies. This project is a joint effort between the Human Factors and Aging Laboratory, directed by Dr. Wendy Rogers and CRIS Healthy Aging Center, directed by Amy Brown, and bridges the gap between the University of Illinois and community aging services providers. Additionally, this project allows for further investigation into TechSAge research centered around digital home assistants.

STAFF SPOTLIGHTS

Kara Cohen is a Research Technician II at the Center for Inclusive Design & Innovation (CIDI) at Georgia Tech. Kara brings several years of research and clinical experience to the TechSAge team, including neuroimaging, cognitive assessments, and inpatient rehabilitation. As part of the Telewellness Technologies project, Kara has been actively involved in design and materials development for the Tele Tai Chi intervention study for older adults with long-term mobility disabilities. She recently became a certified instructor in Seated Tai Chi for Arthritis and will be serving as a moderator for the interactive, small group classes, delivered via Zoom video conferencing, when the study kicks off in the coming months. Kara works on a variety of projects focused on technology design for aging and technology acceptance among older adults.

Harshal Mahajan, Ph.D. is a Research Assistant Professor at the College of Applied Health Sciences at Illinois and serves as the Assistant Director of Research for the McKechnie Family LIFE Home. Harshal has training in Biomedical Engineering and Rehabilitation Science. As a part of the Monitoring and Managing falls project, Harshal is involved with clinical assessment of wheelchair falls and assists with developing algorithms that will help develop a wheelchair fall detection system. Previously, he was involved with the Smart Bathroom project with clinical assessment of bathroom transfers. His research interests include: smart living environments, smart assistive technologies, virtual and augmented reality rehabilitation interventions.
PRESENTATIONS AND EVENTS

Gerontological Society of America (GSA) 2019

TechSAge hosted its 5th Symposium at GSA titled “Utilizing Technology Networks to Support Social Networks for People Aging with Disability.” Pictured from left to right: Wendy Rogers, Michelle Putnam (Advisory Board Member), Maurita Harris, Ben Thompson, Travis Kadylak, & Tracy Mitzner

American Congress of Rehabilitation Medicine (ACRM) 2019

This year we hosted the 1st ever TechSAge symposium at ACRM: “Rehabilitation Technologies to Support Aging-In-Place for People with Long-Term Mobility Disabilities”. Pictured from left to right: Jon Sanford, Elena Remillard, Lyndsie Koon, & Laura Rice. Not pictured: Jake Sosnoff

Human Factors and Ergonomics Society (HFES 2019)

TechSAge was highlighted in a panel presentation, "Health technology innovation to support individuals aging with a mobility disability: From the clinic to the home." Pictured: Wendy Rogers, Jon Sanford, Margaret Campbell (Advisory Board Member), George Mois, Jenay Beer, Elena Remillard, Carolyn Phillips & daughter, Meera.

Carle Rehabilitation Center - Brain Injury Symposium (2020)

In February, TechSAge investigators were invited to present, "Maximizing Independence with Technology in the Home", at this 2-day, multidisciplinary event focused on brain injury rehab medicine. Pictured from left to right: Laura Rice, Jake Sosnoff & Wendy Rogers.
As one of our most active research participants, Barb Bressner is always excited to learn about new ways technology can support people with disabilities. She serves as a lead organizer/committee member for the annual Disability Research Expo in Illinois, which typically hosts over 100 exhibitors with 1,000 to 2,000 attendees. In addition to participating in TechSAge studies herself, she is always willing to share recruitment opportunities with this network and help identify interested individuals. When asked why she thinks participating in research studies is important, she responded, “We all have to be open to new technology – there’s so much out there that can help people. We have to be progressive and do anything to assist a person with a disability to be independent.”

Reprint of original news story by Shaina Walker, Center for Inclusive Design and Innovation.

Dr. Paul Lam, a world leader in the field of tai chi for health improvement, came to Georgia Tech last fall to meet with TechSAge researchers to discuss technology innovation for improving access to tai chi interventions. As part of the Telewellness Technologies project, Principal Investigator Tracy Mitzner and her team are exploring how the physical and social health benefits of group exercise classes can be made accessible at home for those aging with mobility disabilities. Tele-technology, such as video-conferencing software with audio and video exchange, provides opportunities to alleviate many of the barriers these individuals face in participating in group wellness classes. Starting with a presentation about TechSAge and the Telewellness Technologies project, the TechSAge team discussed how their research ties into Lam’s work.

“Research has shown factors like lack of transportation, inaccessible classrooms and buildings, and fear of negative stereotypes play a huge role in the attendance of group classes among older adults, and particularly those with disabilities”, Mitzner said during the presentation. “The concept of remote exercise instruction through video is not new, and now using YouTube, other streaming services, and apps, there is potential to target specific population’s needs and capabilities – something Dr. Lam has done well.” The Tai Chi for Health Institute offers a wide range of programs strategically designed for
distinct purposes, levels, and conditions, including the evidence-based Tai Chi for Arthritis being used in the TechSAge intervention study.

The presentation was met with praise from Lam. “I was looking for something like what you are doing...You have the structure and we have the know-how.” With a growing online tai chi community that offers subscription-based access to instructional videos and resources, Lam is eager to explore ways to add opportunities for social interaction on this platform. Afterwards, Lam enjoyed a photoshoot on the CIDI roof, a campus tour, and a working lunch with the team to discuss project plans as well as new grant opportunities.

TechSAge is excited about the future possibilities of their partnership with Lam, realizing that their research has the potential to make a greater impact through his global network. The partnership is an important step towards their goal of supporting the health and wellness of older adults with disabilities, who are often left out or overlooked in the design of group fitness activities and social health.

Lam lives in Sydney, Australia and founded the Tai Chi for Health Institute in 2010 with his colleagues. As a family physician, and tai chi practitioner and teacher for more than 40 years, he spends his time committed to promoting tai chi for health improvement by conducting workshops in various countries, trainings, and researching benefits of tai chi.

LATEST PUBLICATIONS

We conduct a variety of research studies that focus on understanding the needs of, and developing supportive technologies for, older adults with a range of abilities and disabilities.

We maintain a registry of names of people who are interested in being contacted about research studies. Opportunities include: surveys, focus groups, interviews, and technology evaluations. Depending on the study, you may be able to participate on the phone, online, on campus, at your home, or in other locations. Compensation varies by study.

Interested in joining? We need to ask a you a few questions about yourself to see which studies you might be eligible for and match your interests with our researchers. This information is for screening purposes only and will not be shared with anyone outside of our research team. You can complete the brief survey (5-10 minutes) online here: [TechSAge Participant Registry Survey](#).

Have ideas about how we might reach qualified individuals in your network? Contact our Project Coordinator, Elena Remillard at: elena.remillard@design.gatech.edu or 404-385-2564

All TechSAge studies will be compliant with the CDC guidelines for COVID-19 the time of the study.
CURRENT

A Detection System to Monitor and Manage Falls among Wheelchair Users: Phase 2

Research participants needed! Seeking wheelchair and scooter users (ages 60+). Participants must use a wheelchair (power or manual) or scooter for at least 75% of their mobility and have used the device for at least 1 year. Must also have a history of falls (at least 1/year).

We are currently conducting a research study to examine the characteristics wanted in wheelchair fall detection device that is able to accurately detect a fall from a wheelchair. You will be compensated $10 for participation.

For full details, see STUDY FLYER
Contact: dpqoluiuc@outlook.com

COMING THIS FALL

ACCESS 2 Interview Study

We are conducting a study that explores the everyday challenges older adults with long-term disabilities experience as they age. Participation involves an interview (completed remotely) and questionnaires. Compensation provided.

We are seeking individuals (ages 65-85) in the following 3 groups:

Multiple sclerosis (MS) FLYER

Vision impairment due to Glaucoma or Macular Degeneration FLYER

Late-deafened - hearing loss that occurred after the acquisition of speech and language. FLYER

*Must have condition for at least 10 years.

For full details, see individuals study flyers above.

Contact: Elena Remillard

Tele Tai Chi Study

Are you (or someone you know) an older adult with a long-term mobility disability?

We are conducting a study that uses videoconferencing to provide adults aging with mobility disabilities with online access to interactive, seated Tai Chi classes. In this 8-week study, participants will join online, small-group classes, that can be attended from home using a computer or tablet. The classes will deliver an evidence-based, seated Tai Chi class. Compensation provided.

Participants must be ages 60-80 years old and have a mobility disability for at least 10 years. Participants must also have internet access and have basic computer skills (e.g., comfortable checking email, watching videos online).

For full details, see STUDY FLYER
Contact: Elena Remillard
UPCOMING EVENTS

Rehabilitation Engineering Society of North America (RESNA) Annual Conference
(9/23-9/24)

Gerontological Society of America (GSA) Annual Scientific Meeting
(11/4–11/8)

International Society for Gerontechnology (ISG) World Conference
(10/6–10/9)

American Congress of Rehabilitation Medicine (ACRM) Annual Conference
(10/21–10/24)

Human Factors & Ergonomics Society (HFES) International Annual Meeting
(10/5–10/9)

Follow us!

For more information on TechSAge, visit our website: www.TechSAgeRERC.org

Rehabilitation Engineering Research Center on Technologies to Support Aging-in-Place for People with Long-Term Disabilities (RERC TechSAge). TechSAge is funded by grant #90REGE0006-01-00 from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), a Center in the Administration for Community Living (ACL), Department of Health and Human Services (HHS).